Instanton Phenomenology at HERA

A. Ringwald

in collaboration with

F. Schrempp

and

M. Gibbs (Monte Carlo)

S. Moch (PhD Thesis)

- 1. Introduction
- 2. Monte Carlo Generator QCDINS
 - Physics Input
 - Limitations
- 3. Conclusions

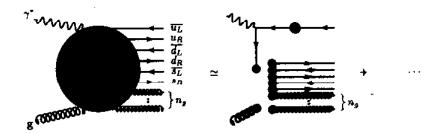
Copy available via WWW:

 $http://www.desy.de/~ringwald/dis97/talk.ps. {\it gz}$

1. Introduction

- Hard scattering processes in strong interactions are successfully described in terms of the usual Feynman diagrams of perturbative QCD.
- Procedure behind Feynman diagrammatics:
 - Expansion of the Euclidean path integral expression for the corresponding Euclidean Green's functions

$$\frac{\int [dA][d\psi][d\bar{\psi}]A_{\mu}(x_1)\dots\psi(x_i)\dots\bar{\psi}(x_n)\exp\{-S[A,\psi,\bar{\psi}]\}}{\int [dA][d\psi][d\bar{\psi}]\exp\{-S[A,\psi,\bar{\psi}]\}}$$


about the perturbative vacuum configuration, $A_{\mu}^{(0)}=0$, with minimum Euclidean action $S^{(0)}=0$.

- Amplitudes: power-series in terms of α_s .
- The instanton $A_{\mu}^{(I)}(x)$ is a non-trivial solution of the Euclidean YM equations and thus a non-trivial local minimum of the Euclidean action with $S^{(I)}=2\pi/\alpha_s$.
 - Expansion of the Euclidean path integral about the instanton can be summarized by modified Feynman rules.
 - Amplitudes: $\propto \exp\{-2\pi/\alpha_s\}$.
- In QCD with massless quarks usual perturbation theory and instanton perturbation theory describe two distinct classes of processes:
 - In usual perturbation theory, Green's functions corresponding to chirality (Q_5) violating processes vanish to all orders.
 - In instanton perturbation theory, only Green's functions corresponding to $\Delta Q_5 = 2n_f$ processes receive non-vanishing contributions.

ullet Example in DIS: Amplitudes for generic $\Delta Q_5 = 2\,n_f$ process,

$$\gamma^* + g \Rightarrow \sum_{\text{flavours}}^{n_f} \left[\overline{\mathbf{q}_L} + \mathbf{q}_R \right] + n_g g.$$

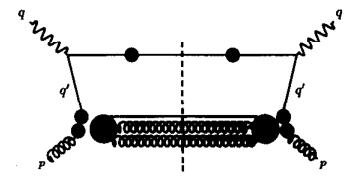
- Vanish to all orders in conventional perturbation theory.
- Receive non-vanishing contribution from expansion about instanton:

- Feynman rules and results: c.f. F. Schrempp's talk in WG V
- Close analogy to B+L violation in electro-weak processes in the multi-TeV region. QCD-instantons however less suppressed than electro-weak instantons ($\alpha_s \gg \alpha_W$).
- An experimental discovery of such a novel, non-perturbative manifestation of non-abelian gauge theories would clearly be of basic significance.
- DIS at HERA offers a unique window to detect QCD-instanton induced processes through their characteristic multi-particle final-state signature.

2. Monte Carlo Generator QCDINS

[Gibbs, A.R., F. Schrempp '95 & in preparation; Carli, A. R., F. Schrempp, in prep.]

- "QCDINS 1.4.1": a Monte Carlo Generator for instanton induced processes in DIS, interfaced to HERWIG 5.8 (hadronization)
- Describe basic physics input and compare with results
 - Cross-Sections
 - Final-State Characteristics
 - Search Strategies for Instantons
 - Model-Dependent Extrapolation to Small $oldsymbol{x}'$



• I-induced contribution to nucleon-structure function in terms of parton-structure functions $\mathcal{F}_{ig}, \ldots, i=2, L$, and densities f_g, \ldots :

$$F_2^{(I)}(x_{
m Bj},Q^2) = \sum_k \int_{x_{
m Bj}}^1 rac{dx}{x} \, f_k\left(rac{x_{
m Bj}}{x}
ight) rac{x_{
m Bj}}{x} \, {\cal F}_{2\,k}^{(I)}(x,Q^2)$$

where $x_{\rm Bj} = Q^2/(2P_{\rm nucl} \cdot q)$.

• I-contribution to the (dominating) gluon structure function has the structure of a "handbag" diagram [Ballitsky, Braun '93, A. R., F. Schrempp '96; Moch. A. R., F. Schrempp in prep.]:

Yields nice momentum-space picture

[A. R., F. Schrempp '96; Moch, A. R., F. Schrempp in prep.]:

$$egin{align} \mathcal{F}_{2\,g}^{(I)}(x,Q^2) &\simeq \ & x \sum_q e_q^2 \int_x^1 rac{dx'}{x'} \int^{Q^2rac{x'}{x}} dQ'^2 \, P_{q^*/\gamma}^{(I)}(x,x',rac{Q'}{Q}) \, \sigma_{q^*g}^{(I)}(x',Q'^2) \, , \end{split}$$

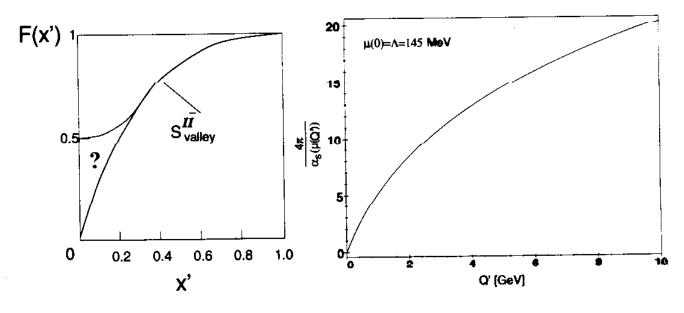
with
$$Q'^2 = -q'^2$$
, $x' = Q'^2/(2p \cdot q')$,

 "Splitting function", associated with the upper part of the "handbag diagram",

$$P_{q^*/\gamma}^{(I)} \left(x, x', rac{Q'}{Q}
ight) \ \simeq rac{3}{16 \, \pi^3} rac{x}{x'} \left(1 + rac{1}{x} - rac{1}{x'} - rac{Q'^2}{Q^2}
ight) \ ,$$

 I-subprocess "total cross-section", containing essential instanton dynamics,

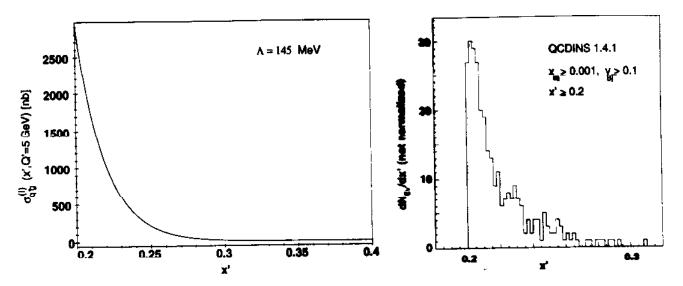
$$\begin{split} \sigma_{q^*g}^{(I)}(x',Q'^2) &= \sum_{n_g} \sigma_{q^*g;\,n_g}^{(I)}(x',Q'^2) \simeq \\ &\frac{\Sigma(x')}{Q'^2} \, \left(\frac{4\pi}{\alpha_s(\mu(Q'))} \right)^{21/2} \, \exp\left[-\frac{4\pi}{\alpha_s(\mu(Q'))} \, F(x') \right] \; . \end{split}$$


• Instanton-induced processes dominated by multi-gluon production:

$$\sigma_{m{q^*g};\,n_g}^{(I)} \propto rac{1}{n_g!} \left(rac{1}{lpha_s}
ight)^{n_g} \exp\{-4\pi/lpha_s\}$$

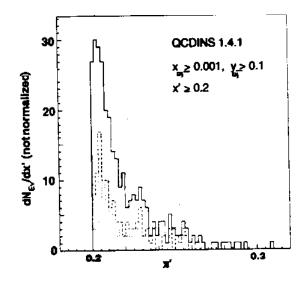
Exponentiates in total cross-section: Exponential suppression factor modified by "Holy-Grail" function F(x'). In intermediate range $0.2..0.3 \lesssim x' \leq 1$, total cross-section exponentially growing with decreasing x'.

Due to inherent ambiguities can take result literally only for

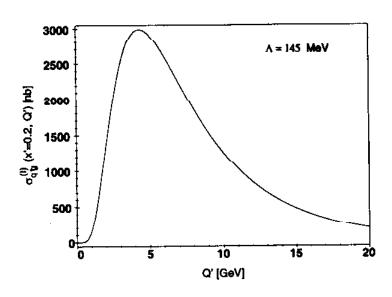

$$x' \ge x'_{\min} \simeq 0.2 - 0.3$$
.

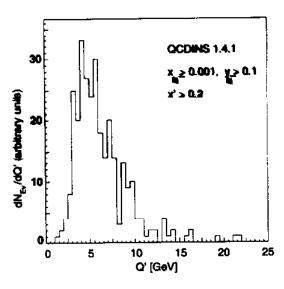
• Effective renormalization scale $\mu(Q')$, $\mu(Q') = Q'\alpha_s(\mu(Q'))/(4\pi)$, should be large enough in order to have sufficiently small coupling \Rightarrow

$$Q' \gtrsim 5 \text{ GeV}$$
.


• Resulting x' dependence:

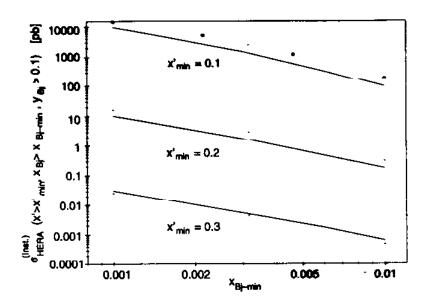
- ullet Lower x' cut absolutely necessary.
- ullet x' cut can be enforced, for example, by cutting


$$x \equiv x_{\rm Bj}/z \equiv Q^2/(Q^2+s),$$


from below, where z is the momentum fraction of the proton carried by the gluon and s is the γ^*g c.m. energy.

(dashed: $x \ge 0.1$; points: $x \ge 0.12$)

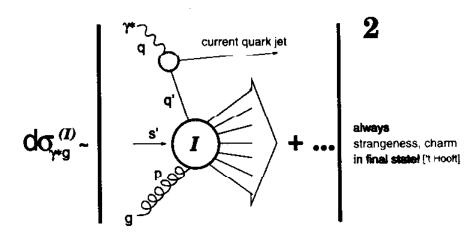
• Resulting Q' dependence:



- Lower Q' cut not mandatory (thanks to the chosen renormalization scale).
 - $\mathcal{F}_{2g}^{(I)}$ infrared insensitive.
 - * Do not have to factor out collinear divergence into parton distributions.
 - $\mathcal{F}_{2g}^{(I)}(x,Q^2)$ independent of Q^2 for $Q^2 \to \infty$, i.e. scaling.
- ullet Check of the Monte Carlo calculation of the instanton-induced contribution to the eP cross-section at HERA:
 - "Theory":
 - * Take gluon distribution at a fixed reference scale.
 - * Use the asymptotic scaling result for $\mathcal{F}_{2\,g}^{(I)}(x,Q^2)$.
 - * Perform all the necessary integrations analytically.

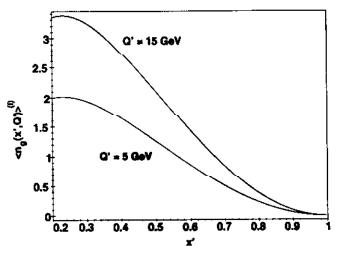
Monte Carlo:

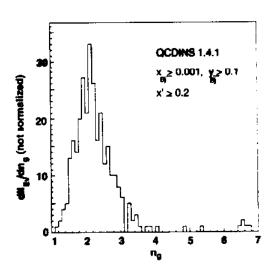
- * Use same gluon distribution.
- * In order to simulate the scaling limit $(Q^2 o \infty)$, use in the Monte Carlo very small $\Lambda = 0.2 \cdot 145$ MeV.
- * Take the cross-section from the Monte Carlo output.


Result:

Nice agreement between "theory" (lines) and QCDINS 1.4.1 (points).

- Very strong dependence on x'_{\min} .
- Thorough investigation of inherent renormalization and factorization scale dependencies is presently under way.


[A. R., F. Schrempp '94 & in prog.; Balitsky, Braun '93; V.V. Khoze, A. R. '91; 't Hooft '76]

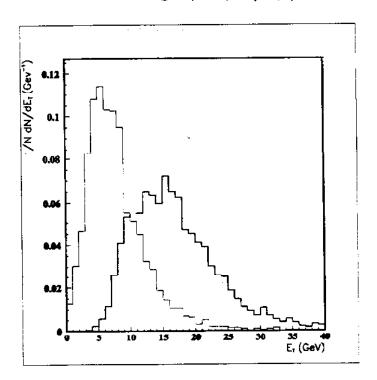


- Isotropic emission of many semi-hard partons in I-rest system: "decaying fireball"
 - High multiplicity: At least $2\,n_f=6-8$ quarks plus a few gluons,

$$\langle n_g(x',Q') \rangle^{(I)} \simeq \frac{2\pi}{\alpha_s(\mu(Q'))} x' (1-x') \frac{dF(x')}{dx'}.$$

- Multiplicity distribution: $\lim_{\mathbf{Bj}} \sigma_{ng}^{(I)\, \mathbf{excl.}} = \mathsf{Poisson}$

- Characteristic flavor flow (strangeness, charm)

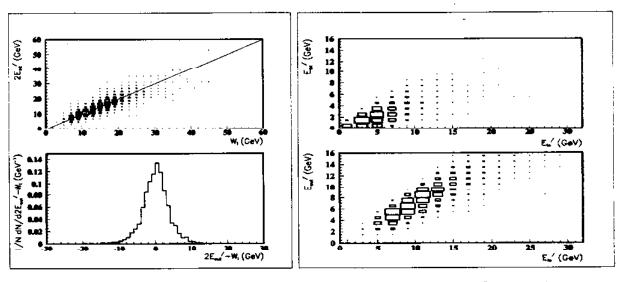


- Current jet
- Hadronic "band": ⇔ isotropy in I-rest system
 - * Large total $E_T=\mathcal{O}(20)$ GeV
 - * Large multiplicity $N_{
 m band} = \mathcal{O}(25)$
 - * No jets in "band"!
 - * Characteristic flavor flow:
 - \star Strangeness $\Rightarrow K_S^0$'s \star Charm $\Rightarrow \mu$'s

- Limits from existing HERA data: c.f. T. Carli's talk later.
 - Searching for excess in multiplicities (all particles; Kaons), total transverse energy . . .
- Possible Search Strategies:

[Gibbs, Greenshaw, Milstead, A.R., F. Schrempp, Proc. "Future Physics at HERA", 1996]

- Combine event shape information with multiplicity cuts, transverse energy cuts and searches for K^0 's and μ 's.
- Analysis in $\gamma-P$ rest-system:
 - * In this system, (1+1) and (2+1) jet perturbative QCD processes deposit their energy predominantly in a plane passing through the $\gamma-P$ direction.
 - * Energies from *I*-induced events are always distributed much more spherically (ISOTROPY!).
 - * I-induced events have large $\langle E_T \rangle$! (Fig.)

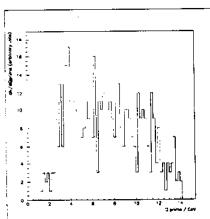


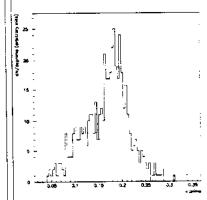
 Reduce normal "DIS" background by minimizing, on an "event-byevent"-basis,

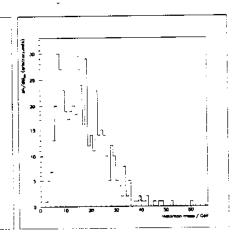

$$E_{ ext{out}} = \min_{\hat{i}} \, \sum_{k}^{n} \mid ec{p}_{k} \cdot \hat{i} \mid ,$$

by choice of \hat{i} normal to the $\gamma-P$ direction.

– Standard (2+1) jet events (boson gluon fusion) have small $E_{\rm out}=\mathcal{O}({\rm jet\ width})$, while for I-induced events $2E_{\rm out}\approx \sqrt{s'}\equiv W_I$ large! (left Fig.)


- $E_{\rm out}$ vs. $E_{\rm in}$ distributions in γ - P c.m. system for 0.001 < x < 0.01, 0.1 < y < 0.6 and $20 < Q^2 < 70$ GeV². Normal "DIS" events (upper right Fig.), I-induced events (lower right Fig.).




- So far, we imposed always strict x' cut, $x' \ge x'_{\min} \simeq 0.2 0.3$, in order to be in the fiducial region of instanton calculations.
- ullet Explore influence of region of smaller x' with a simple model,

$$\sigma_{q^*g}^{(I)}(x',Q'^2) = \sigma_{q^*g}^{(I)}(x'_{\min},Q'^2) \text{ for } x' < x'_{\min}.$$

• Resulting distributions of I-subprocess variables: (QCDINS 1.1; $x_{\rm Bj} \geq 10^{-2}, y_{\rm Bj} \geq 0.1, x'_{\rm min} = 0.2$)

- Q'-distribution: same as before.
- -x'-distribution: peaks at x'_{\min} ; suppression below x'_{\min} is due to gluon density
- M_{I} -distribution: peaks at $\mathcal{O}(15)$ GeV; note that

$$M_I \equiv \sqrt{s'} = Q' \sqrt{rac{1-x'}{x'}}$$

- Model shows essentially same features as model-independent analysis with strict x' cut, since most of the events come from the region in x' where the exponential growth of the cross-section stops.

3. Conclusions

- Discovery of QCD-instanton induced events of basic importance:
 - Novel, non-perturbative manifestation of QCD
 - Analogy to anomalous B+L violation in electro-weak processes in multi-TeV region
- •
- Monte Carlo event generator QCDINS approaching reliable and stable version.
- Decisive search for instanton-induced events at HERA seems feasable.